Rebranding the Ex-convicts

Young-Chul Kim (Sangmyung U.) Glenn Loury (Brown U.)

October 15, 2016
Contents

1 Introduction

2 Basic Framework

3 Labor Market Analysis
 • Employers’ Wage Offers
 • Ex-cons’ Incentive to ”Go Straight”
 • Equilibrium in the Labor Market for Ex-Cons

4 Rebranding Program

5 Socially Optimal Rebranding

6 Conclusion
Section 1. Introduction
Increasing US Imprisonment Rate since 1980s

In 2007:
* 1.5m in prison
* 780,000 in jail
* 800,000 on parole
* 4.2m on probation
Total Population Under U.S. Adult Correctional Systems in 2000s

<table>
<thead>
<tr>
<th>Year</th>
<th>Total correctional population</th>
<th>Community supervision</th>
<th>Incarcerated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Probation</td>
<td>Parole</td>
<td>Total</td>
</tr>
<tr>
<td>2000</td>
<td>6,467,800</td>
<td>4,564,900</td>
<td>3,839,400</td>
<td>725,500</td>
</tr>
<tr>
<td>2005</td>
<td>7,055,600</td>
<td>4,946,600</td>
<td>4,162,300</td>
<td>784,400</td>
</tr>
<tr>
<td>2006</td>
<td>7,199,700</td>
<td>5,035,000</td>
<td>4,236,800</td>
<td>798,200</td>
</tr>
<tr>
<td>2007</td>
<td>7,339,600</td>
<td>5,119,000</td>
<td>4,293,000</td>
<td>826,100</td>
</tr>
<tr>
<td>2008</td>
<td>7,313,600</td>
<td>5,094,400</td>
<td>4,270,100</td>
<td>828,200</td>
</tr>
<tr>
<td>2009</td>
<td>7,235,200</td>
<td>5,015,900</td>
<td>4,196,200</td>
<td>824,100</td>
</tr>
<tr>
<td>2010</td>
<td>7,086,500</td>
<td>4,886,000</td>
<td>4,053,600</td>
<td>840,700</td>
</tr>
<tr>
<td>2013</td>
<td>6,903,200</td>
<td>4,753,400</td>
<td>3,910,600</td>
<td>855,200</td>
</tr>
<tr>
<td>2014</td>
<td>6,851,000</td>
<td>4,708,100</td>
<td>3,864,100</td>
<td>856,900</td>
</tr>
</tbody>
</table>

Average annual percent change, 2007–2014: -1.0% for Total, -1.2% for Probation, -1.5% for Parole, 0.5% for Total, -0.5% for Local jail, -0.7% for Prison, -0.3% for Percent change, 2013–2014: -0.8% for Total, -1.0% for Probation, -1.2% for Parole, 0.2% for Total, 0.1% for Local jail, 1.8% for Prison, -1.0% for Percent change.

Note: Estimates were rounded to the nearest 100 and may not be comparable to previously published BJS reports due to updated information or rounding. Counts include estimates for nonresponding jurisdictions. All probation, parole, and prison counts are for December 31; jail counts are for the last weekday in June. Detail may not sum to total due to rounding and adjustments made to account for offenders with multiple correctional statuses. See Methodology.

*aTotal was adjusted to account for offenders with multiple correctional statuses. See Methodology.
*bIncludes inmates under the jurisdiction of state or federal prisons or held in local jails.
*cIncludes some offenders held in a prison or local jail but who remained under the jurisdiction of a probation or parole agency.
*dMay differ from estimates reported elsewhere in this report. See Terms and definitions.

About 20 percent of All Blacks Imprisoned by early 30s

Men's Risk of Imprisonment by 30–34

![Bar chart showing the risk of imprisonment for different groups.](chart.png)
Key Concepts

- Develop a “model” explaining how the problem of poor labor market outcomes for ex-convicts might be alleviated.
Develop a “model” explaining how the problem of poor labor market outcomes for ex-convicts might be alleviated.

An essential feature of the labor market for ex-convicts: the employers wish to avoid associating with those who will end-up returning to crime,
Key Concepts

- Develop a “model” explaining how the problem of poor labor market outcomes for ex-convicts might be alleviated.
- An essential feature of the labor market for ex-convicts: the employers wish to avoid associating with those who will end-up returning to crime,
- but they cannot be certain from available information: the issue of adverse selection
Key Concepts

- Develop a “model” explaining how the problem of poor labor market outcomes for ex-convicts might be alleviated.
- An essential feature of the labor market for ex-convicts: the employers wish to avoid associating with those who will end-up returning to crime,
- but they cannot be certain from available information: the issue of adverse selection
- A government can nevertheless design a costly, though on net socially beneficial, program by means of which some ex-cons can credibly convey their good intentions.
Key Concepts

- Develop a “model” explaining how the problem of poor labor market outcomes for ex-convicts might be alleviated.
- An essential feature of the labor market for ex-convicts: the employers wish to avoid associating with those who will end-up returning to crime,
- but they cannot be certain from available information: the issue of adverse selection
- A government can nevertheless design a costly, though on net socially beneficial, program by means of which some ex-cons can credibly convey their good intentions.
- Such a program can facilitate more ex-cons obtaining legitimate work, and fewer electing to return to crime.
Key Concepts

- Develop a “model” explaining how **the problem of poor labor market outcomes for ex-convicts** might be alleviated.
- An essential feature of the labor market for ex-convicts: the employers wish to avoid **associating with those who will end-up returning to crime**, but they cannot be certain from available information: the issue of **adverse selection**
- A government can nevertheless design **a costly, though on net socially beneficial, program** by means of which some ex-cons can credibly convey their good intentions.
- Such a program can facilitate **more ex-cons obtaining legitimate work**, and fewer electing to return to crime.
- Broader applicability other than the case of ex-cons.
Section 2. Basic Framework
Frameworks

- Ex-convicts make choices about their future participation in criminal activities.
Frameworks

- Ex-convicts make choices about their future participation in criminal activities.
- Each individual ex-convict is endowed with a personal benefit from going back to crime, denoted by c.
Ex-convicts make choices about their future participation in criminal activities.

Each individual ex-convict is endowed with a personal benefit from going back to crime, denoted by c.

Employers, when faced with a given ex-con job applicant, cannot know whether he is one who places a “high” or “low” value on criminal activity.
Ex-convicts make choices about their future participation in criminal activities.

Each individual ex-convict is endowed with a personal benefit from going back to crime, denoted by c.

Employers, when faced with a given ex-con job applicant, cannot know whether he is one who places a “high” or “low” value on criminal activity.

But, employers have some noisy idiosyncratic information about that individual: “pass or fail test”, denoted by t.
Ex-convicts make choices about their future participation in criminal activities.

Each individual ex-convict is endowed with a personal benefit from going back to crime, denoted by c.

Employers, when faced with a given ex-con job applicant, cannot know whether he is one who places a “high” or “low” value on criminal activity.

But, employers have some noisy idiosyncratic information about that individual: “pass or fail test”, denoted by t.

Employers make a wage offer to the prospective ex-con workers based on a test-inclusive assessment of the likelihood that this individual will return to crime.
Notations and Assumptions

- \(c \equiv \) value of criminal activity for an ex-con (\(c \geq 0 \))
- \(G(c) \equiv \) fraction of ex-con population with crime value no greater than \(c \)
Notations and Assumptions

- $c \equiv$ value of criminal activity for an ex-con ($c \geq 0$)
- $G(c) \equiv$ fraction of ex-con population with crime value no greater than c
- $\mu \equiv$ average value of criminal activity in the ex-con population
Notations and Assumptions

- $c \equiv$ value of criminal activity for an ex-con ($c \geq 0$)
- $G(c) \equiv$ fraction of ex-con population with crime value no greater than c
- $\mu \equiv$ average value of criminal activity in the ex-con population
- Assumption (1): $G(c) = \text{Min}\{\frac{c}{2\mu}, 1\}$ for some $\mu > 0$, $c \geq 0$. (That is, ex-cons’ value of crime is uniformly distributed on the interval $[0, 2\mu]$, with mean μ.)
Notations and Assumptions

- $c \equiv$ value of criminal activity for an ex-con $(c \geq 0)$
- $G(c) \equiv$ fraction of ex-con population with crime value no greater than c
- $\mu \equiv$ average value of criminal activity in the ex-con population
- Assumption (1): $G(c) = \min\{\frac{c}{2\mu}, 1\}$ for some $\mu > 0$, $c \geq 0$. (That is, ex-cons’ value of crime is uniformly distributed on the interval $[0, 2\mu]$, with mean μ.)
- $\pi \equiv$ fraction of ex-con population choosing to go straight $(0 \leq \pi \leq 1)$
Notations and Assumptions

- \(t \equiv \) information (‘pass/fail’ test outcome) employers get about a particular ex-con
Notations and Assumptions

- $t \equiv$ information (‘pass/fail’ test outcome) employers get about a particular ex-con

- Assumption (2): $\Pr\{ t = \text{pass} | \text{straight} \} = \Pr\{ t = \text{fail} | \text{crime} \} = p > \frac{1}{2}$
 (Those going straight (returning to crime) pass (fail) an employer’s “test” of criminal intentions with the probability $p > \frac{1}{2}$).
Section 3. Labor Market Analysis
Employers' Wage Offers

Offered Wages

- $\omega \equiv$ productivity of the labor of an ex-con who goes straight.
- $0 \equiv$ productivity of the labor of an ex-con who returns to crime
Employers’ Wage Offers

Offered Wages

- $\omega \equiv$ productivity of the labor of an ex-con who goes straight.
- $0 \equiv$ productivity of the labor of an ex-con who returns to crime.
- Employers offer wages to individual applicants according to expected productivity:

$$W(\pi, t) = \omega \cdot \Pr\{\text{“straight”} \mid t, \pi\} + 0 \cdot \Pr\{\text{“crime”} \mid t, \pi\},$$
Employers' Wage Offers

Offered Wages

- \(\omega \equiv \) productivity of the labor of an ex-con who goes straight.
- \(0 \equiv \) productivity of the labor of an ex-con who returns to crime.
- Employers offer wages to individual applicants according to expected productivity:

\[
W(\pi, t) = \omega \cdot \Pr\{\text{"straight"} \mid t, \pi\} + 0 \cdot \Pr\{\text{"crime"} \mid t, \pi\},
\]

- Using Bayes’s Rule to compute conditional probabilities:

\[
W(\pi, \text{pass}) = \frac{\omega p\pi}{p\pi + (1 - p)(1 - \pi)}
\]

and

\[
W(\pi, \text{fail}) = \frac{\omega (1 - p)\pi}{(1 - p)\pi + p(1 - \pi)}.
\]
So, we may conclude that:

(i) \(W(\pi, \text{pass}) > W(\pi, \text{fail}) \), for all \(\pi \in (0, 1) \);

(ii) \(W(0, \text{pass}) = W(0, \text{fail}) = 0 \); and

(iii) \(W(1, \text{pass}) = W(1, \text{fail}) = \omega \).
Ex-cons’ Incentive to "Go Straight"

Expected Wages and Incentive

- Expected wage paid to an ex-con who “goes straight” is:
 \[V_1(\pi) \equiv pW(\pi, pass) + (1 - p)W(\pi, fail), \]

- Expected wage paid to an ex-con who “returns to crime” is:
 \[V_0(\pi) \equiv (1 - p)W(\pi, pass) + pW(\pi, fail). \]
Ex-cons’ Incentive to "Go Straight"

Expected Wages and Incentive

- Expected wage paid to an ex-con who “goes straight” is:
 \[V_1(\pi) \equiv pW(\pi, \text{pass}) + (1 - p)W(\pi, \text{fail}), \]
 Expected wage paid to an ex-con who “returns to crime” is:
 \[V_0(\pi) \equiv (1 - p)W(\pi, \text{pass}) + pW(\pi, \text{fail}). \]
- So \(V_1(0) = V_0(0) = 0 \), and \(V_1(1) = V_0(1) = \omega. \)
Ex-cons’ Incentive to "Go Straight"

Expected Wages and Incentive

- Expected wage paid to an ex-con who “goes straight” is:
 \[V_1(\pi) \equiv pW(\pi, pass) + (1 - p)W(\pi, fail), \]

- Expected wage paid to an ex-con who “returns to crime” is:
 \[V_0(\pi) \equiv (1 - p)W(\pi, pass) + pW(\pi, fail). \]

- So \(V_1(0) = V_0(0) = 0 \), and \(V_1(1) = V_0(1) = \omega. \)

- The wage-offer-incentive for an ex-con to “going straight”:
 \[R(\pi) \equiv V_1(\pi) - V_0(\pi) = (2p - 1) \cdot [W(\pi, pass) - W(\pi, fail)]. \]
Ex-cons' Incentive to "Go Straight"

Expected Wages and Incentive

- Expected wage paid to an ex-con who “goes straight” is:
 \[V_1(\pi) \equiv pW(\pi, \text{pass}) + (1 - p)W(\pi, \text{fail}), \]

- Expected wage paid to an ex-con who “returns to crime” is:
 \[V_0(\pi) \equiv (1 - p)W(\pi, \text{pass}) + pW(\pi, \text{fail}). \]

- So \(V_1(0) = V_0(0) = 0 \), and \(V_1(1) = V_0(1) = \omega \).

- The wage-offer-incentive for an ex-con to “going straight”:
 \[R(\pi) \equiv V_1(\pi) - V_0(\pi) = (2p - 1) \cdot [W(\pi, \text{pass}) - W(\pi, \text{fail})]. \]

- \(R(\pi) \) is a concave function of \(\pi \), and that
 \[R(0) = 0 = R(1), \]

- and that
 \[R\left(\frac{1}{2}\right) = \omega(2p - 1)^2 \geq R(\pi), \text{ for all } \pi \in [0, 1]. \]
An ex-convict’ decision calculus:
“return to crime” is the rational choice if \(c > R(\pi) \),
while “go straight” is the rational choice if \(c < R(\pi) \).
Self-confirming Employer’s Belief

- An “equilibrium employer belief” is any number $\pi^* \in [0, 1]$ that solves the equation:

\[
\pi^* = G(R(\pi^*))
\]

- Employer’s belief about fraction of ex-cons who “go straight” = π
- Wage offered to individual ex-cons, given test = $W(\pi, t)$
- Employer belief confirmed whenever $\pi = \pi' = G(R(\pi))$
- Fraction of ex-cons “going straight” π', where $\pi' = G(R(\pi))$
- Incentives for any ex-con to “go straight” = $R(\pi)$
Equilibrium in the Labor Market for Ex-Cons

Self-confirming Employer’s Belief

- There exists multiple equilibria without the following assumption:
There exists multiple equilibria without the following assumption:

Assumption (3): \[\frac{\omega}{\mu} \leq \frac{2p(1-p)}{(2p-1)^2} \] (That is, employers’ information is not “too accurate.” Specifically, we are assuming: \[p \leq \left(\frac{1}{2} \right) \left[1 + \left(\frac{\mu}{\mu + 2\omega} \right)^{\frac{1}{2}} \right]. \)

\[G(R(\pi)) \]
When $\pi^* = 0$ is the only value of π which solves $\pi^* = G(R(\pi^*))$, we will say: “labor market for ex-convicts collapses due to the problem of adverse selection.” (by Assumption (3))
Section 4. Rebranding Program for the Ex-convicts
A certifiable and costly activity (hereafter “the program”) with no productive content (i.e., an ex-cons’ participation neither raises ω nor lowers c)
Rebranding Program

- A certifiable and costly activity (hereafter “the program”) with no productive content (i.e., an ex-cons’ participation neither raises ω nor lowers c)
- Before going into the labor market, ex-convicts choose whether to join this program or not.
A certifiable and costly activity (hereafter “the program”) with no productive content (i.e., an ex-cons’ participation neither raises ω nor lowers c)

Before going into the labor market, ex-convicts choose whether to join this program or not.

Let K denote the cost to an ex-convict for participating in this program: the program’s designers can choose the value of K for which $0 < K < \omega$.
Rebranding Program

- A certifiable and costly activity (hereafter “the program”) **with no productive content** (i.e., an ex-cons’ participation neither raises ω nor lowers c)
- Before going into the labor market, ex-convicts choose **whether to join this program or not**.
- Let K denote **the cost to an ex-convict for participating** in this program: the program’s designers can choose the value of K for which $0 < K < \omega$.
- Program participation is **verifiable by employers**. (E.g. a certificate is issued which cannot be forged.)
Program Participation

- Let π' denote employers’ prior belief about the fraction of program participants who are “going straight.”
Let π' denote employers’ prior belief about the fraction of program participants who are “going straight.”

So, $R(\pi') = V_1(\pi') - V_0(\pi')$ will now represent the value of going straight for program participants only.
Existence of Unique Equilibrium

Proposition

For every $K \in (0, \omega)$, there is an (essentially unique) equilibrium with positive program participation such that a positive fraction $\tilde{\pi}' \in (0, 1)$ of program participants elect to go straight, where:

$$K = V_0(\tilde{\pi}'), \text{ so } \tilde{\pi}' = V_0^{-1}(K), \ 0 < K < \omega.$$

Moreover, program participants who go straight are strictly better-off than they would have been in the absence of a program, while non-participants are no worse-off, implying that the introduction of a program induces a (weak) Pareto improvement over the status quo ante.
[Proof of Proposition]

First, suppose $K > V_0(\tilde{\pi}')$

- $\tilde{\pi}' = 1,$ $V_0(\tilde{\pi}') = \omega > K$
- : contradiction

Second, suppose $K < V_0(\tilde{\pi}')$

- $\tilde{\pi} = G(R(\tilde{\pi}')),$ then $\tilde{\pi}' = 0,$
- $V_0(\tilde{\pi}) = 0 < K$
- : contradiction
[Proof of Proposition]

Finally, suppose $K = V_0(\tilde{\pi}')$:

$G(R(\tilde{\pi}')) + \phi[1-G(R(\tilde{\pi}'))]$ join the program!

Then, there exists $\phi \in (0,1)$ such that $\tilde{\pi}' = G(R(\tilde{\pi}'))/\{G(R(\tilde{\pi}')) + \phi[1-G(R(\tilde{\pi}'))]\}$.
Section 5. Socially Optimal Rebranding
One may reject this program on C/B grounds due to its assumed zero “treatment effect”.

Yet it is clear that this programmatic intervention would still be socially valuable.
One may reject this program on C/B grounds due to its assumed zero “treatment effect”.
Yet it is clear that this programmatic intervention would still be socially valuable.
The introduction of the program changes the equilibrium payoff for only one group of agents – those with $c < R(\tilde{\pi}')$:

\[
\text{program utility} = V_1(\tilde{\pi}') - K = V_1(\tilde{\pi}') - V_0(\tilde{\pi}') = R(\tilde{\pi}'),
\]

while their payoff in the absence of any program is just c.

NSS is maximized when $R(\tilde{\pi}')$ is maximized:

$\pi^{**} = \frac{1}{2}$.

Net Social Surplus
Net Social Surplus

- One may reject this program on C/B grounds due to its assumed zero "treatment effect".
- Yet it is clear that this programmatic intervention would still be socially valuable.
- The introduction of the program changes the equilibrium payoff for only one group of agents – those with $c < R(\tilde{\pi}')$:

$$\text{program utility } = V_1(\tilde{\pi}') - K = V_1(\tilde{\pi}') - V_0(\tilde{\pi}') = R(\tilde{\pi}')$$

while their payoff in the absence of any program is just c.
- So, rebranding produces the overall net surplus for society:

$$\text{NSS } = \int_0^{R(\tilde{\pi}')} [R(\tilde{\pi}') - c]dG(c) = \int_0^{R(\tilde{\pi}')} G(c)dc$$
One may reject this program on C/B grounds due to its assumed zero “treatment effect”.

Yet it is clear that this programmatic intervention would still be socially valuable.

The introduction of the program changes the equilibrium payoff for only one group of agents – those with \(c < R(\tilde{\pi}') \):

\[
\text{program utility} = V_1(\tilde{\pi}') - K = V_1(\tilde{\pi}') - V_0(\tilde{\pi}') = R(\tilde{\pi}'),
\]

while their payoff in the absence of any program is just \(c \).

So, rebranding produces the overall net surplus for society:

\[
\text{NSS} = \int_0^{R(\tilde{\pi}')} [R(\tilde{\pi}') - c] dG(c) = \int_0^{R(\tilde{\pi}')} G(c) dc
\]

NSS is maximized when \(R(\tilde{\pi}') \) is maximized: \(\pi^{**} = \frac{1}{2} \).
The socially optimal rebranding program will be:

\[
K^{**} = V_0\left(\frac{1}{2}\right) = (1 - p)W\left(\frac{1}{2}, \text{pass}\right) + pW\left(\frac{1}{2}, \text{fail}\right) = 2\omega p(1 - p).
\]
The socially optimal rebranding program will be:

\[K^{**} = V_0\left(\frac{1}{2}\right) = (1 - p)W\left(\frac{1}{2}, \text{pass}\right) + pW\left(\frac{1}{2}, \text{fail}\right) = 2\omega p(1 - p). \]

Thus, the optimal program is more onerous, (1) the higher is the value of legitimate work and (2) the less accurate is employers’ information about workers’ criminal intentions.
Socially Optimal Program

- The socially optimal rebranding program will be:

\[K^{**} = V_0 \left(\frac{1}{2} \right) = (1 - p) W(\frac{1}{2}, \text{pass}) + p W(\frac{1}{2}, \text{fail}) = 2\omega p(1 - p). \]

- Thus, the optimal program is more onerous, (1) the higher is the value of legitimate work and (2) the less accurate is employers’ information about workers’ criminal intentions.

- The size of the optimal program (in terms of the fraction of ex-convicts who participate in it), \(N(\pi^{**}) \), will be:

\[N(\pi^{**}) = G\left(\frac{R(\pi^{**})}{\pi^{**}} \right) = 2 G\left(R\left(\frac{1}{2} \right) \right) = \left(\frac{\omega}{\mu} \right)(2p - 1)^2. \]
The socially optimal rebranding program will be:

\[K^{**} = V_0\left(\frac{1}{2}\right) = (1 - p)W\left(\frac{1}{2}, \text{pass}\right) + pW\left(\frac{1}{2}, \text{fail}\right) \]

\[= 2\omega p(1 - p). \]

Thus, the optimal program is more onerous, (1) the higher is the value of legitimate work and (2) the less accurate is employers’ information about workers’ criminal intentions.

The size of the optimal program (in terms of the fraction of ex-convicts who participate in it), \(N(\pi^{**}) \), will be:

\[N(\pi^{**}) = \frac{G(R(\pi^{**}))}{\pi^{**}} = 2G(R\left(\frac{1}{2}\right)) = \left(\frac{\omega}{\mu}\right)(2p - 1)^2. \]

The program size \(N(\pi^{**}) \) is greater, (1) the higher is the value of legitimate work, (2) the smaller is the mean value of criminal participation and (3) the more accurate is the information available to employers.
Section 6. Concluding Remarks
While we have adopted Assumption (3) in order to be sure that the market collapses completely, our result that a **Pareto improvement is possible** here does not depend on that assumption.
Concluding Remarks

- While we have adopted Assumption (3) in order to be sure that the market collapses completely, our result that a **Pareto improvement is possible** here does not depend on that assumption.

- The stability of the equilibrium is not fully discussed in the given simplest set-up, but **this stability issue is just solved** in a more generalized set-up.
While we have adopted Assumption (3) in order to be sure that the market collapses completely, our result that a **Pareto improvement is possible** here does not depend on that assumption.

The stability of the equilibrium is not fully discussed in the given simplest set-up, but **this stability issue is just solved** in a more generalized set-up.

Broader applicability: e.g., periodic and costly “**franchise re-branding campaigns**” wherein a franchise retailer “reinvents” itself from time to time.
Concluding Remarks

- While we have adopted Assumption (3) in order to be sure that the market collapses completely, our result that a *Pareto improvement is possible* here does not depend on that assumption.

- The stability of the equilibrium is not fully discussed in the given simplest set-up, but *this stability issue is just solved* in a more generalized set-up.

- Broader applicability: e.g., periodic and costly “franchise re-branding campaigns” wherein a franchise retailer “reinvents” itself from time to time

- by imposing *costly (and seemingly meaningless!) requirements* on its current members, or,
Concluding Remarks

- While we have adopted Assumption (3) in order to be sure that the market collapses completely, our result that a Pareto improvement is possible here does not depend on that assumption.
- The stability of the equilibrium is not fully discussed in the given simplest set-up, but this stability issue is just solved in a more generalized set-up.
- Broader applicability: e.g., periodic and costly “franchise re-branding campaigns” wherein a franchise retailer “reinvents” itself from time to time by imposing costly (and seemingly meaningless!) requirements on its current members, or,
- by creating a “super-brand” that is costly to attain.
Thank You for Paying Attention!